Saturated simple and 2-simple topological graphs with few edges
نویسندگان
چکیده
A simple topological graph is a topological graph in which any two edges have at most one common point, which is either their common endpoint or a proper crossing. More generally, in a k-simple topological graph, every pair of edges has at most k common points of this kind. We construct saturated simple and 2-simple graphs with few edges. These are k-simple graphs in which no further edge can be added. We improve the previous upper bounds of Kynčl, Pach, Radoičić, and Tóth [4] and show that there are saturated simple graphs on n vertices with only 7n edges and saturated 2-simple graphs on n vertices with 14.5n edges. As a consequence, 14.5n edges is also a new upper bound for k-simple graphs (considering all values of k). We also construct saturated simple and 2-simple graphs that have some vertices with low degree.
منابع مشابه
Saturated simple topological graphs
A simple topological graph G is a graph drawn in the plane so that any pair of edges have at most one point in common, which is either an endpoint or a proper crossing. G is called saturated if no further edge can be added without violating this condition. We construct saturated simple topological graphs with n vertices and O(n) edges. These constructions are nearly optimal: it is shown that ev...
متن کاملSaturated simple and k-simple topological graphs
A simple topological graph G is a graph drawn in the plane so that any pair of edges have at most one point in common, which is either an endpoint or a proper crossing. G is called saturated if no further edge can be added without violating this condition. We construct saturated simple topological graphs with n vertices and O(n) edges. For every k > 1, we give similar constructions for k-simple...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملImproved enumeration of simple topological graphs
A simple topological graph T = (V (T), E(T)) is a drawing of a graph in the plane where every two edges have at most one common point (an endpoint or a crossing) and no three edges pass through a single crossing. Topological graphs G and H are isomorphic if H can be obtained from G by a homeomorphism of the sphere, and weakly isomorphic if G and H have the same set of pairs of crossing edges. W...
متن کاملUse of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes
Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...
متن کامل